Phenotypic Responses of Differentiated Asthmatic Human Airway Epithelial Cultures to Rhinovirus

نویسندگان

  • Jianwu Bai
  • Steven L. Smock
  • George R. Jackson
  • Kenzie D. MacIsaac
  • Yongsheng Huang
  • Courtney Mankus
  • Jonathan Oldach
  • Brian Roberts
  • Yu-Lu Ma
  • Joel A. Klappenbach
  • Michael A. Crackower
  • Stephen E. Alves
  • Patrick J. Hayden
چکیده

OBJECTIVES Human airway epithelial cells are the principal target of human rhinovirus (HRV), a common cold pathogen that triggers the majority of asthma exacerbations. The objectives of this study were 1) to evaluate an in vitro air liquid interface cultured human airway epithelial cell model for HRV infection, and 2) to identify gene expression patterns associated with asthma intrinsically and/or after HRV infection using this model. METHODS Air-liquid interface (ALI) human airway epithelial cell cultures were prepared from 6 asthmatic and 6 non-asthmatic donors. The effects of rhinovirus RV-A16 on ALI cultures were compared. Genome-wide gene expression changes in ALI cultures following HRV infection at 24 hours post exposure were further analyzed using RNA-seq technology. Cellular gene expression and cytokine/chemokine secretion were further evaluated by qPCR and a Luminex-based protein assay, respectively. MAIN RESULTS ALI cultures were readily infected by HRV. RNA-seq analysis of HRV infected ALI cultures identified sets of genes associated with asthma specific viral responses. These genes are related to inflammatory pathways, epithelial structure and remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1, MUC5AC, CDHR3), and novel ones that were identified for the first time in this study (e.g. CCRL1). CONCLUSIONS ALI-cultured human airway epithelial cells challenged with HRV are a useful translational model for the study of HRV-induced responses in airway epithelial cells, given that gene expression profile using this model largely recapitulates some important patterns of gene responses in patients during clinical HRV infection. Furthermore, our data emphasize that both abnormal airway epithelial structure and inflammatory signaling are two important asthma signatures, which can be further exacerbated by HRV infection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Directional Secretory Response of Double Stranded RNA-Induced Thymic Stromal Lymphopoetin (TSLP) and CCL11/Eotaxin-1 in Human Asthmatic Airways

BACKGROUND Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithel...

متن کامل

Pharmacologically-induced mitotic synchrony in airway epithelial cells as a mechanism of action of anti-inflammatory drugs

BACKGROUND Mitotic synchrony is the synchronous progression of a population of cells through the cell cycle and is characteristic of non-diseased airway epithelial cells. However, we previously showed that asthmatic airway epithelial cells are characterized by mitotic asynchrony and are pro-inflammatory as a result. Glucocorticoids can induce mitotic synchrony that in turn suppresses the pro-in...

متن کامل

Rhinovirus-induced basic fibroblast growth factor release mediates airway remodeling features

UNLABELLED BACKGROUND Human rhinoviruses, major precipitants of asthma exacerbations, induce lower airway inflammation and mediate angiogenesis. The purpose of this study was to assess the possibility that rhinoviruses may also contribute to the fibrotic component of airway remodeling. METHODS Levels of basic fibroblast growth factor (bFGF) mRNA and protein were measured following rhinovir...

متن کامل

Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus

Rhinoviruses are the major trigger of acute asthma exacerbations and asthmatic subjects are more susceptible to these infections. To investigate the underlying mechanisms of this increased susceptibility, we examined virus replication and innate responses to rhinovirus (RV)-16 infection of primary bronchial epithelial cells from asthmatic and healthy control subjects. Viral RNA expression and l...

متن کامل

Role of rhinovirus infections in asthma.

Human rhinoviruses are not only the main pathogens responsible for the common cold, but are now recognized to have a major impact on asthma pathogenesis. There is evidence that rhinovirus infections play a role in asthma development, asthma exacerbations and, potentially, airway remodeling. Children who experience repeated rhinovirus-induced wheezing episodes in infancy have a significantly inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015